Dr. V S KRISHNA GOVERNMENT DEGREE COLLEGE VISAKHAPATNAM

B.Sc. PHYSICS SYLLABUS UNDER CBCS

[2023-24 Batch onwards]

Course Code: 23(ELE)M31

II Year B.Sc (Hons.)-ELECTRONICS

SEMESTER-III

COURSE 5: SEMICONDUCTOR DEVICES AND MATERIALS

Theory

Credits: 3

3 hrs/week

Course Objective:

- To provide basic knowledge and concepts of Semiconductor materials and devices.
- To facilitate students learn on the physical principles and operational characteristics 2. of Semiconductor devices and some of its important applications. Pre-requisites: Basic understanding of semiconductors.

Course Outcomes:

- Ability to apply basic concepts of Inorganic and Organic Semiconductor materials for electronic device application in modern electronic industry.
- Detailed knowledge of various classifications and applications to VLSI, LEDs and solar cells.
- Holistic view of the latest progress in two-dimensional (2D)-one-dimensional (1D) and nano materials.
- Emphasis on nano-electronic applications such as Schottky barrier transistors, flexible Electronics.

Unit I:

INORGANIC AND ORGANIC SEMICONDUCTOR: Energy bands, carrier transport, mobility, drift- diffusivity, excess carrier, injection and recombination of the excess carriers, carrier statistics; High field effects: velocity saturation, hot carriers and avalanche breakdown.

Unit II:

MAJORITY CARRIER DEVICES: MS contacts rectifier and non-rectifier, MIS hetero-junction, HEMT and band diagrams, I-V and C-V structures, MESFET, characteristics.

Unit III:

MOS STRUCTURES: SEMICONDUCTOR SURFACES; The ideal and non-ideal MOS capacitor band diagrams and CVs; Effects of oxide charges, defects and interface states. MOSFET: Structures and Device Characteristics, Short-Channel effects. Charge coupled Devices (CCDs), application to VLSI.

Unit IV:

NONVOLATILE MEMORY DEVICE. Optoelectronic Devices: solar cell, photo detectors, LEDs, laser diodes. Nano structures and concepts: quantum wells, supper lattice structures, nanorod, quantum dot, CNTs, 2D materials: grapheme, BN, MoS₂ etc, matamaterials.

UNIT-V:

MULTISTAGE AMPLIFIERS: BJT at high frequencies, frequency response of RC coupled amplifiers and transformer coupled amplifier.

Reference Books:

- Donald A. Neamen, Semiconductor Physics and Devices Basic Principles, 3rdedn. McGraw-Hil (2003)
- 2. B.G. Streetman and Sanjay Banerjee, Solid State Electronic Devices, 6th Edn., Prentice Hall, 2006.
- 3. S. M. Sze and Kwok K. Ng Physics of Semiconductor Devices, Wiley (2013).
- 4. M. Hussa, A. Dimoulas and A. Molle, 2D Materials for NanoElectronics, CRC press (2016)
- 5. M.S.Tyagi, Introduction to Semiconductor Materials and Devices, Willey, Student Edition

Course Code: 23(ELE)M31P

SEMESTER-III

COURSE 5: SEMICONDUCTOR DEVICES AND MATERIALS

Practical Credits: 1 List of Experiments 2 hrs/week

- To study the Hall Effect: determine the Hall coefficient, type of semiconductor and carrier concentration in the given semiconductor sample.
- To study the four probe method: calculate the resistivity and energy band gap of 2. given semiconductor sample. 3.
- To determine the resistivity of the given semiconductor specimen using Vander Pauw method.
- To design a MOSFET as switching regulator for given duty cycle and plot the 4. current- voltage (I-V) characteristic of MOSFET using Keithley. 5.
- To design a phase controlled rectifier using SCR and plot the I-V characteristic of SCR using Keithley.
- To design a relaxation oscillator using UJT and plot the I-V characteristic of UJT 6. using Keithley.
- I-V characteristics measurement of a p-n diode/LEDs using Keithley calculate its ideality factor.

Dr V.S.Krishna Govt. Degree College(A), Visakhapatnam 2023-2024

Course Code: 23(ELE)M31

BLUE PRINT (:: SEMICONDUCTOR DEVICES AND MATERIALS)

IIB.Sc. (Hons.) Electronics- SEM-III/Course: 5 Max Marks-75 Time-3Hrs. Credits:3

		TOPIC	SECTION-A	SECTION-B	
S.No.	UNIT		ESSAY QUESTIONS 10 MARKS	SHORT QUESTIONS 5MARKS	TOTAL MARKS
1.	I	INORGANIC AND ORGANIC SEMICONDUCTOR:	2	2	30
2.	II	MAJORITY CARRIER DEVICES	2	2	30
3.	III	MOS STRUCTURES: SEMICONDUCTOR SURFACES	2	2	30
4.	IV	NONVOLATILE MEMORY DEVICE	2	2	30
5.	V	MULTISTAGE AMPLIFIERS	2	2	30
6.		TOTAL QUESTIONS	10	10	150

[Note: Question Paper setters are instructed to add Numerical Problems (each of 4 marks) with a maximum weightage of 8 marks either in Section-A or Section-B covering all the five units in the syllabus]

Dr. V S KRISHNA GOVERNMENT DEGREE COLLEGE (A) VISAKHAPATNAM

B.Sc. PHYSICS SEMESTER END EXAMINATION

[2023-24 Batch onwards]

Course Code: 23(ELE)M31

II Year B.Sc (Hons.)-ELECTRONICS

SEMESTER-III COURSE 5: SEMICONDUCTOR DEVICES AND MATERIALS
Time: 3 brs

	1 111	iic. 5 iiis.	Maxmarks:00
	SECT	ION – A	15 V 0 40 1
1.	a)	Answer all Questions of the following [OR]	$[5 \times 8 = 40]$
	b)		
2.	a)		
	b)	[OR]	
3.	a)	[OR]	
	b)	[]	
4.	a)	[OB]	
	b)	[OR]	
5.	a)		
	b)	[OR]	
		SECTION – B	
		Answer any FIVE Questions of the follow	
	a)		
	a)		
	a)		
9.	a)		
10	0. a)		
11	. a)		
1	2. a)		
1	3. a)		

14. a)15. a)

Dr. V. S. Krishna. Government Degree College (A), Visakhapatnam Programme: B.Sc. Honours in Electronics (Major)

w.e.f. A.Y. 2023-24

COURSE STRUCTURE

II Year: Semester-III

23ELEM32: DIGITAL ELECTRONICS

Theory

Credits: 3

3 Hrs/Week

Course Objectives: The course on Digital Electronics aims to provide a basic understanding of the principles of Number systems, Combinational and sequential digital circuits as well as Memory devices.

LEARNING OUTCOMES:

On successful completion of this course, the students will be able to:

- To understand the number systems, Binary codes and Complements.
- ❖ To understand the Boolean algebra and simplification of Boolean expressions.
- ❖ To analyze logic processes and implement logical operations using combinational logic circuits.
- ❖ To understand the concepts of sequential circuits and to analyze sequential systems in terms of state machines.
- ❖ To understands characteristics of memory and their classification.
- To implement combinational and sequential circuits using VHDL.

Unit - I

NUMBER SYSTEM AND CODES: Decimal, Binary, Hexadecimal, Octal. Codes: BCD, Gray and Excess-3 codes- code conversions- Complements (1's, 2's,9's and 10's), Addition - Subtraction using complement methods.

Unit- II

BOOLEAN ALGEBRA AND THEOREMS: Boolean Theorems, De-Morgan's laws. Digital logic gates, Multi-level NAND & NOR gates. Standard representation of logic functions (SOP and POS), Minimization Techniques (Karnaugh Map Method: 2,3 variables).

Unit-III

COMBINATIONAL DIGITAL CIRCUITS: Adders-Half & full adder, Subtractor-Half and full subtractors, Parallel binary adder, Magnitude Comparator, Multiplexers (4:1)) and Demultiplexers (1:4), Encoder (8- line-to-3- line) and Decoder (3-line-to-8-line). IC-LOGIC FAMILIES: TTL logic, CMOS Logic families (NAND&NOR Gates).

UNIT-IV

SEQUENTIAL DIGITAL CIRCUITS: Flip Flops: S-R FF, J-K FF, T and D type FFs, Master-Slave FFs, Excitation tables, Registers: - Serial In Serial Out and Parallel In and Parallel Out, Counters Asynchronous-, Mod-8, Mod-10, Synchronous-4-bit &Ring counter.

UNIT-V

MEMORY DEVICES: General Memory Operations, ROM, RAM (Static and Dynamic), PROM, EPROM, EPROM, EAROM.

TEXT BOOKS:

- 1. M. Morris Mano, "Digital Design" 3rd Edition, PHI, New Delhi.
- 2. Ronald J. Tocci. "Digital Systems-Principles and Applications" 6/e. PHI. New Delhi. 1999.(UNITS I to IV)
- 3. G.K. Kharate-Digital electronics-oxford university press
- 4. S. Salivahana & S. Arivazhagan-Digital circuits and design
- 5. Fundamentals of Digital Circuits by Anand Kumar

Reference Books:

- 1. Herbert Taub and Donald Schilling. "Digital Integrated Electronics". McGraw Hill. 1985.
- 2. S.K. Bose. "Digital Systems". 2/e. New Age International. 1992.
- 3. D.K. Anvekar and B.S. Sonade. "Electronic Data Converters: Fundamentals & Applications". TMH. 1994.
- 4. Malvino and Leach. "Digital Principles and Applications". TMG Hill Edition.

Outcomes: -

- ❖ Develop a digital logic and apply it to solve real life problems.
- Analyze, design and implement combinational logic circuits.

- Classify different semiconductor memories.
- Analyze, design and implement sequential logic circuits.
- Simulate and implement combinational and sequential logic circuits using VHDL.

SEMESTER-III

23ELEM32P: DIGITAL ELECTRONICS Practical Course

Practical	Credits: 1	2 hrs/week

LAB LIST:

- 1. Verification of IC-logic gates.
- 2. Realization of basic gates using discrete components (resistor, diodes &transistor).
- 3. Realization of basic gates using Universal gates (NAND & NOR gates).
- 4. Verify Half adder and full adder using gates.
- 5. Verify Half subtractor and full subtractor using gates.
- 6. Verify the truth table Multiplexer and demultiplexer.
- 7. Verify the truth table Encoder and decoder.
- 8. Verify the truth table of RS, JK, T-F/F using NAND gates.
- 9. 4-bit binary parallel adder and subtractor using IC 7483.
- 10. BCD to Seven Segment Decoder using IC -7447/7448.

Dr. V. S. Krishna Govt. Degree College (Autonomous)

Visakhapatnam-13

(Affiliated To Andhra University, Visakhapatnam)

BLUE PRINT FOR SEMESTER END EXAMINATIONS PAPER SETTING

SEMESTER – III (II Year)

Programme Course Title

: B.Sc. Honours in Electronics (Major)

: Digital Electronics

Course Code

: 23ELEM32

Learning level wise Weightage							
Bloom's Taxonomy level	Weightage	Marks	Essay type	Short answer type			
Knowledge/ Remember	33 %	20	2	I (One out of two)			
Understanding/ Comprehension	27 %	16	2				
Application	20 %	12	1	1 (One out of two)			
Analysis	13 %	8		2 (Two out of four)			
Synthesis/ Evaluate	7 %	4		1 (One out of two)			
Total	100 %	60		5 Out of 10 questions			

Chapter wise Weightage					
S. No.	Module/ Unit	Name of the chapter	8 Marks	4 Marks	
1	Unit – I	NUMBER SYSTEM AND CODES	2 (One out of two)	2	
2	Unit – II	BOOLEAN ALGEBRA AND THEOREMS	2 (One out of two)	2	
3	Unit – III	COMBINATIONAL DIGITAL CIRCUITS	2 (One out of two)	2	
4	Unit – IV	SEQUENTIAL DIGITAL CIRCUITS	2 (One out of two)	2	
5	Unit – V	MEMORY DEVICES	2 (One out of two)	2	

Dr. V. S. Krishna Govt. Degree College (Autonomous)

Visakhapatnam-13

(Affiliated To Andhra University, Visakhapatnam)

SEMESTER END EXAMINATIONS MODEL PAPER

Programme : B.Sc. Honours in Electronics (Major)
Course Title : Digital Electronics

Course code : 23ELEM32

Time: 3 Hrs

Max. Marks: 60

PART- A

Answer any five of the following questions. Each question carries Four marks.

	$5 \times 4 = 20 \text{ N}$	Marks
).	
	PART- B	
	answer all the following questions. Each que	stion carries Eight marks
	$5 \times 8 = 40 \text{ M}$	arks
11.		
	(Or)	
12.		
	(Or)	
)	
13.		
	(Or)	
)	
14.	(Or)	
))	
15.		
	(Or)	

DR VS KRISHNA GOVERNMENT DEGREE AND PG COLLEGE

(An Autonomous Institution Affiliated to Andhra University)
Reaccredited by NAAC with A Grade (3rd Cycle).

District Resource Center and Centre for Research Studies

Maddilapalem, VISAKHAPATNAM 530013, Andhra Pradesh

Programme: B.Sc. Honours in Electronics (Major)

w.e.f. AY 2023-24

SEMESTER-III COURSE CODE: 23ELEM33: ANALOG ELECTRONICS

Theory	Credits:4	5hrs/week	

COURSE OBJECTIVES

- a. The design and working of RC coupled amplifiers, transformer coupled amplifiers and power amplifiers,
- b. The concept of negative and positive feedback, pulse shaping and Schmitt trigger, and the op-amp characteristics, frequency response and its linear and non-linear applications.

UNIT-I

Amplifiers: General principles of small signal amplifiers - Classifications - RC Coupled amplifiers - Gain - Frequency response - Input and output impedance - Multistage amplifiers - Transformer coupled amplifiers - Equivalent circuits at low, medium and high frequencies — Emitter follower.

Class A and Class B power amplifiers - Single ended and push-pull configurations - Power dissipation and output power calculations.

UNIT-II

Feedback Amplifiers: Basic concept of feedback amplifiers - Transfer gain with feedback - General characteristics of negative feedback amplifier - Effect of negative feedback on gain - Gain stability - Distortion and bandwidth - Input and output resistance in the case of various types of feedback - Analysis of voltage and current in feedback amplifier circuits.

UNIT-III

Operational Amplifiers: Principles - Transfer characteristics - Various offset parameters - Differential gain - CMRR - Slew rate — Bandwi

UNIT-IV

Op-amp Circuits: Basic operational amplifier circuits under inverting and non-inverting modes - Adder - Subtractor - Integrator - Differentiator - Comparator - Sine, square and triangular waveform generators - Active filters - Sample and Hold circuits.

UNIT-V

Oscillators: Positive feedback - Stability issues - Feedback requirement of oscillations - Barkhausen criterion for oscillation - Hartley, Colpitts, Phase shift and Wien bridge oscillators - Condition foroscillation and frequency derivation - Crystal oscillator - UJT relaxation oscillator. Monostable, bistable and astablemultivibrators - Schmitt trigger.

Text Books

- Introduction to Integrated Electronics V. Vijayendran,
 S.Viswanathan (Printers & Publishers) Pvt. Ltd., Chennai, 2005.
- 2. Electronic Circuits and Systems Y.N. Bapat, Tata McGraw Hill Publishing Co. Ltd.

Reference Books

- 1. Electronic Devices and Circuits G.K. Mithal, Khanna Publishers, Delhi.
- Hand Book of Electronics Gupta & Kumar, PragatiPrakashan, Meerut.
- 3. Electronic Devices and Circuit Theory R. Boylestad& L. Nashelsky, Prentice Hall of India Private Limited, 6/e.

Prakasam Publishers.

Electronic Devices and Circuits - J.P. Agarwal & Amit Agarwal,

5. Linear Integrated Circuits - D. Roy Choudhury & Shail Jain, New Age International (P) Limited.

DR VS KRISHNA GOVERNMENT DEGREE AND PG COLLEGE

(An Autonomous Institution Affiliated to Andhra University)
Reaccredited by NAAC with A Grade (3rd Cycle).

District Resource Center and Centre for Research Studies

Maddilapalem, VISAKHAPATNAM 530013, Andhra Pradesh

Programme: B.Sc. Honours in Electronics (Major)

w.e.f. AY 2023-24

SEMESTER-III COURSE CODE: 23ELEM33: ANALOG ELECTRONICS

BLUE PRINT

Max Marks-60 Time-3Hrs. Credits:4

	Learning	level wise We	eightage	
Bloom's Taxonomy level	Weightage	Marks	Essay type	Short answer type
Knowledge/ Remember	33%	20	2(two out of four)	1(one out of two
Understanding/ Comprehension	27%	16	2(two out of four)	
Application	20%	12	1(one out of two)	1(one out of two
Analysis	13%	8		2(two out of four)
Synthesis/ Evaluate	7%	4		1(one out of two
Total	100	60	5(each question has internal choice)	5 outb of 10 questions

Chapter wise Weightage

	Module/	Name of the chapter	8 marks	4 marks
S.No	Chapter			
1	I	Amplifiers	2(one out of two)	2
2	II	Feedback Amplifiers	2(one out of two	2
3	III	Operational Amplifiers	2(one out of two	2
4	IV	Op-amp Circuits	2(one out of two	2
5	V	Oscillators	2(one out of two	2
		TOTAL QUESTIONS	5(each question has internal choice)	5 out of given 10

DR VS KRISHNA GOVERNMENT DEGREE AND PG COLLEGE

(An Autonomous Institution Affiliated to Andhra University)
Reaccredited by NAAC with A Grade (3rd Cycle).

District Resource Center and Centre for Research Studies Maddilapalem, VISAKHAPATNAM 530013, Andhra Pradesh

Programme: B.Sc. Honours in Electronics (Major)

w.e.f. AY 2023-24

SEMESTER-III COURSE CODE: 23ELEM33: ANALOG ELECTRONICS

(MODEL PAPER)

DURATION::3 hrsMAX.MARKS :: 60

SECTION-A

9.

10.

	Answer any FIVE questions of the following	(5 X 4 = 20 M)
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		

Answer ALL the questions Of the following

(5 X 8 = 40 M)

11. (a)

[OR]

(b)

12 (a)

[OR]

(b)

13(a)

[OR]

(b)

14 (a)

[OR]

(b

15 (a)

[OR]

(b)

(An Autonomous Institution Affiliated to Andhra University) Reaccredited by NAAC with 'A' Grade(3rd Cycle) District Resource Centre & Center for Research Studies Maddilapalem, VISAKHAPATNAM 530 013, Andhra Pradesh

(COURSE CODE: 23ELEM34)

Dr. VS KRISHNA GOVT. DEGREE COLLEGE (A), VISHAKAPATNAM

BLUE PRINT

Programme: B.Sc. Honours in Electronics (Major) -2023-2024

SEMESTER-III

COURSE 8: ELECTRONIC COMMUNICATION SYSTEMS

MAX MARKS - 60

TIME - 3 HOURS

(CREDITS-3)

S.NO	UNIT	TOPIC	ESSAY TYPE QUESTIONS (SECTION-A) Each one 8 marks	SHORT ANSWER QUESTIONS (SECTION-B) Each one 4 marks
1	1	UNIT-I	1	2
2	II.	UNIT-II	1	2
3	Ш	UNIT-III	1	2
		UNIT-IV	1	2
4	IV	ONTI-IV		
5	V	UNIT-V	1	2
			5 (internal choice)	5 (five to be answered out of ten questions)

Percentage of choice =
$$\frac{120-60}{120} \times 100 = 50\%$$

Note: one numerical problem should be given in section-A

(An Autonomous Institution Affiliated to Andhra University)
Reaccredited by NAAC with 'A' Grade(3rd Cycle)
District Resource Centre & Center for Research Studies
Maddilapalem, VISAKHAPATNAM 530 013, Andhra Pradesh

(COURSE CODE: 23ELEM34)

Programme: B.Sc. Honours in Electronics (Major)

SEMESTER-III COURSE 8: ELECTRONIC COMMUNICATION SYSTEMS

Theory Credits: 3 3 hrs/week

The students will learn:

a.	fundamentals	of antenna, th	neir charac	teristics and	types,
h	11.				

D. amplitude modulation and demodulation and radio wave transmission and reception,

C. frequency modulation and demodulation and FM radio wave transmission and reception,

d. Principle of analogue and digital pulse modulation and their applications,

e. Transmission and detection of digital signals.

UNIT-I

Antenna - Effective resistance - Efficiency - Directive gain - Bandwidth, Beam width and polarization - Dipole - Folded dipole - Arrays - Yagi - Uda - Helical - Discone - Parabolic - Dish Antennas - Ground wave, sky wave and space ware propagation - Skip distance - Maximum usable frequency.

UNIT-II

Modulation - Needs for Modulation - Types of Modulation - Amplitude Modulation - Generation and detections circuits - Balanced Modulator - DSB/SC and SSB Modulation - VSB modulation. Block diagram of AM Radio transmitter and super heterodyne Receiver.

UNIT-III

Frequency Modulation - Definition - Derivation of Modulated wave - Generation of FM - Varactor diode and Reactance tube Modulators - Detectors - Balanced slope detector, Foster Seeley discriminator, and ratio detector - Block diagram of FM transmitter and receiver.

(An Autonomous Institution Affiliated to Andhra University)
Reaccredited by NAAC with 'A' Grade(3rd Cycle)
District Resource Centre & Center for Research Studies
Maddilapalem, VISAKNAPATNAM 530 013, Andhra Pradesh

(COURSE CODE: 23ELEM34)

UNIT-IV

Pulse Modulation - Sampling theorem - PAM, PWM, , PCM - quantizing, sampling, coding, decoding, quantization error, delta modulation and adaptive delta modulation.

UNIT-V

Multiplexing - FDM, TDM, CDMA - ASK, FSK, PSK -Advantages of Digital Communication - Introduction to Microwave, Fiber optic, Satellite Communications

- RADAR - range equation.

Text Books

- 1. Electronic Communication Systems *George Kennedy*, McGraw Hill Book Company, 4/e, 2005.
- 2. Communication Engineering T.G. Palanivelu, Anuradha Publicatons, 1/e, 2002.

Reference Books:

- 1. Communication System Roddy & Coolen, 4/e, Pearson Education, 2005.
- 2. Principles of Communication Engineering *Anok Singh*, 4/e, Sathyaprakasam Publications, 2004.
- 3. Electronic Communication Systems Wayne Tomasi, 4/e, Pearson Education, 2004.

(An Autonomous Institution Affiliated to Andhra University) Reaccredited by NAAC with 'A' Grade(3rd Cycle) District Resource Centre & Center for Research Studies Maddilapalem, VISAKHAPATNAM 530 013, Andhra Pradesh

(COURSE CODE: 23ELEM34)

Programme: B.Sc. Honours in Electronics (Major) -2023-2024 **SEMESTER-III**

COURSE 8: ELECTRONIC COMMUNICATION SYSTEMS (COURSE CODE: 23ELEM34)

Theory

Credits: 3

3 hrs/week

Model Paper

Max Marks: 60

Section A								
nswer	any five	questions	from	the follo	wing	$(4M\times$	5 =	20 <i>M</i>

	Section A
	Answer any five questions from the following $(4M \times 5)$
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
	Section B
	Answer all the questions $(8M \times 5 = 40M)$
11. (A)	
	(OR)
(B)	
12. (A)	
	(OR)
(B)	
13. (A)	
	(OR)
(B)	
14. (A)	
	(OR)
(B)	
15. (A)	
	(OR)
(B)	